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Statistical Ensembles and Partition Functions 

 

In a previous section, for  the behavior of either the Boltzmann 

“H-function” or the state variable “entropy,” a criterion was devel-

oped for estimating the extent of a process in its approach to as-

ymptotic equilibrium. The entropy S turned out to be simply a 

measure of the spread of an ensemble of systems (e.g., 106 N-

particle assemblies over a given spatial volume V, and with a fixed 

total energy) over all  system states available at the given fixed 

energy E. The effect is simply due to the number of equivalent 

pathways: As exemplified in Fig. 2, there are multitudes more 

pathways further away from the initial configuration compared to 

just a few trajectories back to the origin. And therefore, while there 

is a non-zero probability for a complex system to return to its 

starting point in time, such a reversal will essentially never be ob-

served. This is true in particular, when the initial configuration of 

the complex is highly organized, i.e., is very different from a ran-

dom association, and a larger number of more complex states are 

accessible to the system.  
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Figure 1: Evaporative disintegration of a 2D cluster of particles 
(solid square) and their distribution over available space in time. 
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As an illustration, Fig. 1 depicts schematically the time depend-

ent disintegration of a cluster of two-dimensional particles popu-

lating the states available in a planar box of a fixed volume (area). 

Initially, at t=t0 the N particles are spatially highly correlated and 

form a compact cluster. The cluster is assumed to be unstable and 

can emit (“evaporate”) successively its constituent particles, which 

populate the previously empty locations (single-particle s.p. 

states) in the planar box. All empty s.p. states are accessible to all 

particles. The progress of the disintegration is followed by the 

snapshots of the N-particle configuration taken at successive time 

intervals tn. In the sequence shown in Fig. 1, a cluster remnant is 

still discernible as a small square up to t = t4. For t > t4, it is no 

longer in existence. The configurations for 

t5, t6, t7 are very similar in that they cor-

respond to slightly different distributions 

of the N particles over the box of volume 

V. For these 3 configurations, a time evo-

lution is no longer obvious. The configu-

rations all look random and are essentially 

equivalent realizations of the final asymp-

totic equilibrium distribution of the cluster 

particles. The configurations for t5, t6, 

t7 are different microstates of the N-

particle system in equilibrium. They 

and all equivalent microstates give 

rise to the same equilibrium macros-

tate of the system. Since the particles 

can move, the system will change its ap-

pearance from one of the NVE microstates 

to another. No microstate is excluded, 

since they are all equivalent, i.e., all have the same probability  

 

 time

 Towards Equilibrium

 increases 

Figure 2: Illustration of the 
time evolution of an unbi-

ased transport process 
towards regions of higher 

state densities (). 
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                               ( )
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

                   (1) 

 In order to appreciate the very different magnitudes of the var-

ious types of states of interest it is 

useful to examine a numerical ex-

ample for the above 2D cluster de-

cay. Assume a 2D box of 

50x50=2500 x-y bins and A=100 

particles on this grid. As shown in 

Fig. 3 (top), in the initial configu-

ration, the particles form a com-

pact 2D cluster of square area of  

              
2   a 10 10=             (2) 

 

The number of states cluster of the 

cluster in the box is given by the 

ways the cluster square can be fit 

into the box by sliding it into the 

different possible positions, 

 

 
2 2 340 1 6 10cluster (N a) . = − = =    (3) 

 

From this, one can now easily cal-

culate the number of states of the 

configurations where the cluster 

has evaporated one of its 100 par-

ticles, as illustrated at the bottom panel of Fig.3. The evaporated 

particle has access to (2500-100)=2400 open s.p. states (bins), 

since (approximately) only 100 are blocked by the cluster. There-

fore, the number of states for such a configuration is, 

 

A

a 2 10 10

100

a = 

=

2 50 50 2500A =  =

Figure 3: 100-particle cluster con-

figurations (100 intrinsic states): 
square of side length a = 10 bin 
widths in a volume of 2500 s.p. 
states. 
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5 3 8

1 1 1 1100 1 6 10 2 4 10 3 84 10cluster p , p cluster p p . . .− −
  =   =    =      (4) 

 

where the factor of 100 represents the number of choices for the 

evaporated particle. Therefore, there are already 2.4x105 as many 

states (configurations) possible with one evaporated particle than 

are accessible to the original cluster. For a completely dissociated 

cluster, where all particles are randomly distributed over the 2500 

bins, this number increases to the enormous  

 

     

2 2
182

2

2500
10

100 2400
NVE chaotic

N N ! !

N!(N N)! ! !N

 
 =  = = =  

− 
        (5) 

 

of states (arrangements) of the 100-particle system in the two di-

mensional box. The probability for any of these equivalent mi-

crostates to be occupied in equilibrium m is then, 

 

                            
1

1 2i NVE

NVE

f i , ,...,= = 


                      (6) 

 

In a series of repeated measurements of A similarly pre-

pared systems, these quantities would experimentally be ob-

tained from the number (Ai) of ensembles ending up in microstate 

state i, via 

 

                                        i if A A=                                      (7) 

 

Conversely, the equilibrium macrostate defined as a superposition 

of all NVE microstates occurs with a yet unnormalized probability 

of 

                                   NVE BS( ) k
NVEP e 

 =                            (8) 
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which is a very large number compared to clusterP   given by Equ. 

4. The total probability defined in Equ. 8 is also called microca-

nonical partition function. It is generating function for the prob-

ability distribution of any associated system observables. The var-

iable S is the entropy belonging to the equilibrium state density, 

 

                                     B NVES k n=                                 (9) 

 

It is clear that once it is in the chaotic equilibrium state, the system 

will essentially never find back to its completely assembled cluster 

state. The time that it can be estimated to take, the so-called 

Poincaré recurrence time is proportional to the number (den-

sity) of states in equilibrium. 

 

According to an earlier section, one can follow the time evolution 

of the spontaneous cluster disintegration process through the H 

(eta)-function or, equivalently, the entropy of the N-particle sys-

tem. Along the t-dependent path of system evolution, one ob-

serves an increase in S from an initially few units (of Bk ) to several 

hundred units. This increase is significant because of the exponen-

tial dependence of the probability on entropy (Equ. 9). Generally, 

it is clear that for a transition i → f between two macrostates of a 

”microcanonical” system (one with fixed numbers of particles N, 

fixed volume V and fixed energy E) to occur spontaneously, the 

entropy has to increase 

 

                                  0f

f i B

i

S S S k n


 = − =  


                 (10) 
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The type of microcanonical systems for fixed particle num-

ber, volume and energy discussed above are isolated sys-

tems such as individual atoms which have no contact with their 

surroundings and exchange neither energy nor particles with any 

other system. However, many systems encountered in practice al-

low at least some exchange of energy with an outside world. Of 

particular interest are relatively small systems that can easily be 

manipulated in a laboratory environment but are capable of heat 

energy exchange with a much larger environment. The latter type 

of very large or energetic system is sometimes called “heat bath,” 

because it forces the smaller system of interest to acquire a 

macrostate consistent with the larger environment. For example, 

the environment can maintain a small system at a fixed average 

particle energy <>, earlier identified with the temperature T. The 

small systems with fixed number of particle (N), fixed vol-

ume (V) and a given temperature (T) are called “canonical.” 

The corresponding ensembles of many similarly prepared systems 

are called canonical ensembles. The small system taken together 

with its entire environment produces of course again a microca-

nonical system, because the combination of system and environ-

ment (= universe) is isolated by definition. The combined system 

must conserve energy (1st Law of Thermodynamics), while the 

small canonical system preserves this only on average (average 

energy → temperature) but is capable of thermal fluctuations 

about that average. 

 

As is true for a microcanonical stochastic system, a canonical 

system is not precisely predictable (not deterministic). Statements 

have validity for such stochastic system only when averages are 

performed over ensembles of many instances (representations), 

where “many” means A  . In practice, because the typically 

immense number  of available states, this task is literally 
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impossible to fulfill. In principle, such averages (or means) can 

experimentally be produced by performing a time average of a 

single measurement of the system, but over long enough times, 

such that a large number of microstates of the system are sampled 

in succession. The alternative is to repeate the same kind of meas-

urement many times over, but with different systems that have 

been equally prepared. For example, one can make a pressure 

measurement on one mole of a gas over times long compared to 

thermal relaxation times or determine the pressure for a large 

number of independent samples, each of one mole of the gas. 

Since the same microstates are sampled in each of the two meas-

urements, the two experiments give the same result (Ergodic Hy-

pothesis). Clearly, it is more practical to perform a time averaged 

measurement which comes close to the task at hand only very 

approximately. 

 

Similar to the probabilities fi of microstates of microcanonical 

systems, those for canonical systems have to add up to unity: 

 

                                       1i
i

f =                                   (11) 

where the sum runs over all  microstates. However, while for a 

microcanonical system, i
i

E const.= = , the corresponding en-

ergy conservation law applies only on average, 

 

                                  i i
i

E f const.= =                        (12) 

The most likely canonical equilibrium states are those with the 

highest entropies S. This variable is defined like in Equ. IV.126, 

i.e., 
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1

B i i
i

S k f n f


=

= −                            (13) 

 

where  is the number of microstates compatible with the macros-

tate considered. There are now more states i fulfilling the weaker 

(mean) energy conservation stated in Equ. 12 than permitted by 

a rigorous energy conservation law. Equations 11 and 12 represent 

boundary conditions, which have to be fulfilled for all macrostates, 

including those defining the asymptotic equilibrium. Mathemati-

cally, the equilibrium state distribution is found again by searching 

for a combination of fi giving the maximum entropy ( 0iS f  = ) but 

under the conditions defined in Equs. 11 and 12. Since both sums 

are constant, the respective derivatives with respect to fi are zero, 

 

                  0 and 0 1 2i i i
i in n

f f n,i , ,....,
f f


 

= = = 
 

       (14) 

 

Therefore, under these and only under these conditions, one can 

add any linear combination of the two equations in (13) to the 

condition of maximum entropy,  

 

                
 

 

1 2

1 2

0 0 1 2

1

i i i
i in

B n n

S f f n , ,....,
f

k n f

  

  

  
= + + = =  

  

= − + + +

 
(15) 

 

This maximization method is called the Method of Lagrange 

multipliers, which are the two constants 1 and 2 still to be de-

termined. From Equ. 15 follows, 
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                                   1 2

1
1n n

B

n f
k

  = + −                        (16)  

or  

                                        
 1 2

1
1n

Bk
nf e

  + −

=                           (17) 

 

Summing over all microstates,  

                                                                        

                                    
1 21

1 1

1 B n Bk k
n

n n

f e e  
 

−

= =

= =               (18) 

one obtains the partition function  

                                  
1 21

1

B n Bk k

n

Z e e  


− +

=

= =                       (19) 

 

which is also an unnormalized probability and a generating func-

tion. Equation 18 can be written as 

                   

                                     
2

1 1

1
n Bk

n
n n

f e
Z

 
 

= =

=                         (20) 

 

Obviously, a normalized probability 

 

                                         
2

1
n Bk

nf e
Z

 
=                             (21) 

 

for each microstate with energy n would explain the above rela-

tions, e.g., Equ. 20. This result applies to different types of en-

sembles. For example, it applies to a canonical ensemble of non-

interacting particles in molecular chaos, characterized by a con-

stant temperature T, which is also associated with the mean 
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particle energy. The probability f of finding a particle with energy 

 in such a chaotic ensemble is governed by the Boltzmann factor

 Bexp k T− . Therefore, it is plausible to postulate 

 

              
1

withn B n Bnk T k T
n

n n

f e Z e e
Z

  − −− 
= = =        (22) 

 

and to identify the Lagrange multiplier with 2 =-·kB =-1/T. For 

other ensembles, the parameter  is connected to other statistical 

or to dynamical properties of the ensemble of particles.                                       

.  

At this point, and assuming a canonical ensemble, it is clear that 

the function Z is definitively an explicit function of the parameter

1 Bk T = , i.e., ( )Z Z = . The dependence on other system param-

eter is less obvious, since the partition sum runs over the entire 

microstate energy spectrum n. Nevertheless, the functional de-

pendence of Z on the energy spectrum is specific for each system 

and may even reveal the characteristics of the system. For exam-

ple, the energy terms of a harmonic oscillator with fundamental 

frequency could be 1 2n (n / ) = + , while that for a free particle 

n with mass m and velocity un could be 
2 2n nmu = . Therefore, the 

actual specific physical information about a system lies in the 

structure of this function, e.g., ( ) ( )orZ , ,... Z ,m,...   , as given 

by the underlying structure of its energy spectrum n. 

 

In the expression (Equ. 22) for the canonical partition function 

Z, each of the quantities n represents the energy of one microstate 

consistent with the macroscopic state of the system. Many mi-

crostates may have the same energy, and hence there can be 

many equal terms in the above sum representation of Z. If () is 
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number of microstates with energy , also called energy “level den-

sity,” then the sum over index n in Equ. 22 can be replaced by a 

sum over levels at energy , 

 

 

             ( ) ( ) ( ) Bn k T

n

Z e e e    

 

   −−  − = =   =           (23) 

 

 

Therefore, the canonical partition function Z( ), which is valid 

for a fixed temperature, can be written as a weighted sum over 

microcanonical partition functions ( ), each of which is valid for 

a fixed energy. Of course, particle number and volume are also 

constant. Note that, except for the macroscopic temperature, 

which is the coupling parameter to the surroundings of the system, 

the partition function Z is given entirely in terms of microscopic 

system properties ( and ). 

 

The practical value of the canonical partition function Z( ) is 

derived from the fact that it can be regarded as a generating func-

tion for all macroscopic variables X. These variables are expressed 

as expectation values or statistical means X  with respect to the 

distribution fn. For example, one obtains the mean total energy 

from 

 

             
1 n

n n n
n n

Z e
n Z f E

Z Z

 

 
 

−  −
− = = = =

 
            (24) 

 

Here, the quantity E : E=  is the total internal energy of the 

system residing in various microcanonical energy states, as given 
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by the weighted average, calculated with the T dependent Boltz-

mann weighting factors n

nf e Z − 
= .  

 

Using the second of Equs. 14, multiplying by fn and summing 

over all states, one obtains another equation determining the La-

grange multipliers for the equilibrium probabilities: 

 

                 
1 2

1 2 2

0 B n n B n n n n
n n n n

B B

k f n f k f f f

S k E S k nZ E

  

  

= − − + +

= − + + = − +

   
         (25) 

 

Rearranging the terms leads to 

                              ( )Bk T nZ E T S : A−  = −  =                        (26) 

and another, closed-form expression for the canonical partition 

function Z, 

 

                              
 

B

A

k T

B

E T S
Z exp e

k T

− − 
= − = 

 
                  (27) 

 

The function 

                                         A E T S= −                                 (28) 

 

introduced above is known as the Helmholtz free energy. Ac-

cording to Equ. 27, A is equivalent to Z and contains the entire 

physical information about the system. Both functions are entirely 

given in terms of macroscopic state functions of temperature and 

entropy. The Helmholtz free energy function A is an important re-

lation used extensively in the formalism of macroscopic equilibrium 

thermodynamics for canonical systems of constant particle 
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number N and constant volume V. These systems are confined 

but not thermally isolated, allowing therefore energy exchange 

with their surroundings.  

 

The partition function, in particular in its macroscopic represen-

tation (cf. Equ. 27), has an innocuous appearance that hides a 

potentially rather complicated implicit dependence on the micro-

scopic coordinates {x1, x2, x3,….., xM} of the system it represents. 

For example, an N-particle system has M=6N continuous position 

and momentum (velocity) degrees of freedom. For continuous de-

grees of freedom, where the energy is a function of the set of co-

ordinates, (x1, x2, x3,….., xM), the partition sum of Equ. 23 is 

transformed into a partition integral,  

 

                  
( )1

1
Mn x , ,x

M
n

Z e Z dx dx e
   − − 

= → =               (29) 

The corresponding expression for the mean energy is now  

 

( ) ( )1

1 1

1 1
Mx , ,x

M M

Z
E n Z dx dx x , ,x e

Z Z

 


 

−  −
= − = = 

      (30) 

 

which is equivalent to Equ. 24. If the individual degrees of freedom 

are decoupled, i.e., independent of each other, the energy is a sum 

over the individual energies, 

 

                                   ( )1
1

M

M i
i

x , ,x ( x ) 
=

=                       (31) 

 

For free particles, only the momentum (velocity) coordinates con-

tribute non-zero energy terms to the sum. If they are confined in 

a position dependent potential, then the energies depend also on 
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spatial coordinates. Consequently, the partition function is a prod-

uct of partition functions for individual degrees of freedom: 

 

                1

1
1 1

M

i

ii

M M( x )
( x )

M i i
i i

Z dx dx e dx e Z
 

 =

− 
− 

= =


= = =      (32) 

 

The average energy for any particle degree of freedom i is then 

calculated as 

                          
( )ix

i i iE nZ n dx e
 

 

−   
= − = −  

   
           (33) 

 

Assuming particle i is a free particle, its energy function is given 

by
22(u) (m )u = . Here, the velocity u represents one of the above 

coordinates xi. For simplicity, set u=x. One then calculates from 

Equ. 33, 

 

      
( )

2

2

m
ux

E nZ n dxe n due
 

  

− −      
= − = − = −   

     
     (34) 

 

Using v : u= , the integral on the r.h.s. can be transformed into 

 

                        
2 2

2 2
1m m

u v

Z due dv e




−  −  
= =  

    
                  (35) 

 

Noting that the integral does not explicitly depend on , one finds 
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2

2
1

1 1 1

2 2

m
v

B

E E nZ n n dv e

n k T

  

 

−  
= = − = − + 

    


= − = =




   (36) 

 

This result shows that the average energy of free particles in equi-

librium is equal to kBT/2. The same conclusion was reached in the 

specific discussion of ideal gas kinetics. The present derivation is 

more general and proves the  

 

Equipartition Theorem: 

 

Any degree of freedom i with a quadratic energy depend-

ence carries in thermal equilibrium a mean energy of 

1 2i BE ( )k T= . 

 

A posteriori, this result justifies the choice made earlier for 

the Lagrange multiplier 2.  


